Shading correction algorithm for improvement of cone-beam CT images in radiotherapy.

نویسندگان

  • T E Marchant
  • C J Moore
  • C G Rowbottom
  • R I MacKay
  • P C Williams
چکیده

Cone-beam CT (CBCT) images have recently become an established modality for treatment verification in radiotherapy. However, identification of soft-tissue structures and the calculation of dose distributions based on CBCT images is often obstructed by image artefacts and poor consistency of density calibration. A robust method for voxel-by-voxel enhancement of CBCT images using a priori knowledge from the planning CT scan has been developed and implemented. CBCT scans were enhanced using a low spatial frequency grey scale shading function generated with the aid of a planning CT scan from the same patient. This circumvents the need for exact correspondence between CBCT and CT and the process is robust to the appearance of unshared features such as gas pockets. Enhancement was validated using patient CBCT images. CT numbers in regions of fat and muscle tissue in the processed CBCT were both within 1% of the values in the planning CT, as opposed to 10-20% different for the original CBCT. Visual assessment of processed CBCT images showed improvement in soft-tissue visibility, although some cases of artefact introduction were observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shading correction algorithm for cone-beam CT in radiotherapy: Extensive clinical validation of image quality improvement

A shading correction algorithm for the improvement of cone-beam CT (CBCT) images (Phys. Med. Biol. 53 5719–33) has been further developed, optimised and validated extensively using 135 clinical CBCT images of patients undergoing radiotherapy treatment of the pelvis, lungs and head & neck. An automated technique has been developed to efficiently analyse the large number of clinical images. Small...

متن کامل

Shading correction for cone-beam CT in radiotherapy: Validation of dose calculation accuracy using clinical images

Cone-beam CT (CBCT) images are routinely acquired to verify patient position in radiotherapy (RT), but are typically not calibrated in Hounsfield Units (HU) and feature non-uniformity due to X-ray scatter and detector persistence effects. This prevents direct use of CBCT for re-calculation of RT delivered dose. We previously developed a prior-image based correction method to restore HU values a...

متن کامل

Image‐domain shading correction for cone‐beam CT without prior patient information

In the era of high-precision radiotherapy, cone-beam CT (CBCT) is frequently utilized for on-board treatment guidance. However, CBCT images usually contain severe shading artifacts due to strong photon scatter from illumination of a large volume and non-optimized patient-specific data measurements, limiting the full clinical applications of CBCT. Many algorithms have been proposed to alleviate ...

متن کامل

A modified fuzzy C means algorithm for shading correction in craniofacial CBCT images

CBCT images suffer from acute shading artifacts primarily due to scatter. Numerous image-domain correction algorithms have been proposed in the literature that use patient-specific planning CT images to estimate shading contributions in CBCT images. However, in the context of radiosurgery applications such as gamma knife, planning images are often acquired through MRI which impedes the use of p...

متن کامل

A feasibility study on the use of MV-CBCT images for urgent palliative treatment planning

Introduction: The application of 3D volumetric imaging modalities in treatment planning of radiation therapy can provide more precisely define tumor localization, and computed tomography (CT) is the most common accepted method for treatment planning. Given the lack of a CT scanner stationed in all radiotherapy departments and equipping most of the medical linear accelerators wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 53 20  شماره 

صفحات  -

تاریخ انتشار 2008